Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato.
نویسندگان
چکیده
The whitefly, Bemisia tabaci biotype B, has been shown to cause pathogenesis-related (PR) proteins to accumulate in plants as a result of direct feeding, but their specific role in plant defensive systems is unclear. Our objective was to compare accumulation of tomato PR proteins (beta-1,3-glucanase, chitinase, peroxidase, P2 and P4) in response to whitefly, with or without tomato mottle virus (ToMoV) infection. Tomato PR protein response was measured over time in plants divided into three treatments: uninfected controls (with or without whiteflies) and plants infested with viruliferous (ToMoV) whiteflies. Five- to six-leaf plants were infested with approximately 5 adult whitefly per leaf. Plants were sampled prior to whitefly infestation and at 14, 28, 42, and 56 days. By 56 days, plants infested with viruliferous whiteflies had significantly more eggs (2.5-fold) and nymphs (4.5-fold) than plants with nonviruliferous whiteflies. A significant increase in the enzymatic activity of all measured PR proteins, as compared to control plants, was only seen in viruliferous whitefly-infested plants. No significant difference was observed in enzyme activities between the uninfected control plants either with or without whiteflies. The greatest differences for all PR proteins assayed were observed 42 days after treatment initiation. Protein blot analyses showed that the differences in PR protein activities among the treatments were due to changes in specific enzyme levels within the plant and were associated with concomitant increases in levels of P2 and P4 PR proteins. Under our experimental conditions, it is clear that PR protein response is much more intense when it is attacked by whiteflies carrying ToMoV than by whitefly alone.
منابع مشابه
Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus in susceptible and resistant tomato plants.
To better understand the nature of resistance of tomato to the whitefly (Bemisia tabaci, B biotype)-transmitted Tomato yellow leaf curl virus (TYLCV), whiteflies and TYLCV were considered as particular cases of biotic stresses and virus resistance as a particular case of successful response to these stresses. Two inbred tomato lines issued from the same breeding program that used Solanum habroc...
متن کاملDetection of tomato leaf curl geminivirus in its vector Bemisia tabaci.
Geminiviruses are single-stranded DNA plant infecting viruses that cause major losses in important crops in tropical and subtropical countries. Tomato leaf curl virus (TLCV) belonging to the genera Begomovirus, is a whitefly-transmitted geminivirus that causes a severe leaf curl disease in tomato (Lycopersicon esculentum). The importance of this disease has prompted a great need for a rapid ide...
متن کاملLong-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity and fecundity.
The association between tomato yellow leaf curl geminivirus (TYLCV, Israeli isolate) and its insect vector, the whitefly Bemisia tabaci, was investigated. Insects that emerged during a 24 h period were caged with TYLCV-infected plants for a 48 h acquisition access period, then with egg-plants--a TYLCV non-host--for the rest of their lives. While TYLCV DNA was associated with the whiteflies duri...
متن کاملTomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component.
The genome of the tomato yellow leaf curl virus (TYLCV), a Bemisia tabaci-transmitted geminivirus, was cloned. All clones obtained were of one genomic molecule, analogous to DNA A of African cassava mosaic virus. Nucleotide sequence analysis of the TYLCV genome showed that it comprises 2787 nucleotides, encoding six open reading frames, two on the virion strand and four on the complementary str...
متن کاملMultitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens.
Our laboratory found that silverleaf whitefly (SLW; Bemisia argentifolii Bellows & Perring) feeding alters host plant physiology and chemistry. The SLW induces a number of host plant defenses, including pathogenesis-related (PR) protein accumulation (e.g., chitinases, beta-1,3-glucanases, peroxidases, chitosanases, etc.). Induction of the PR proteins by SLW feeding occurs in various plant speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of insect biochemistry and physiology
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2002